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1 Introduction

“What must one know a priori about an unknown functional dependency in order to estimate on the basis
of observations?” Vapnik stated as the question which sums up the problem which is learning theory. This
question is answered by asserting bounds for the number of samples necessary given a desired confidence
that a given error is achieved. In the notes by Maxim Raginsky [1], this was often achieved using methods
of Rademacher complexity. The paper by F. Cucker and S. Smale [2], “On the Mathematical Foundations
of Learning”, however, uses the concept of “covering numbers” to establish these bounds. In the Maxim’s
notes [1] there is mention of a better bound for

E [Rn(F(Zn))] ≤ C
√
V (F)

n
, (1)

where F is a space of binary classifiers. But C was not given and neither was the proof. The proof for this
bound is attributed to Dudley [3] , and uses what is called the “chaining method” which utilizes concepts
of both covering numbers and Rademacher averages. The project goal is to prove this bound and calculate
such a value C.

2 Preliminary

A space is sequentially compact if for every sequence there exists a convergent subsequence. A space is
compact if for every open cover there exists a finite subcover. In a metric space these two concepts are
identical, but not in general. Assume that X is a compact space or a manifold in Euclidean space and that
Y = Rn. In applications elements of X are the input data which are to be interpreted while elements of Y
are vectors of probabilities associated with the different possible interpretations. Let ρ be a Borel probability
measure on the probability space Z = X × Y whose regularity properties will be assumed as needed. The
goal in learning theory is to approximate the function best suited for interpreting our input data.

The only constraint we require on each function f : X → Y is that∫
Z

(f(x)−y)dρ = 0. Notice that this forms a subspace, call it S, of functions. Since the expectation of f(x)−y
is zero our main concern is the variance. Define the error (in the least squares sense) of a function f as

E(f) =∆ Eρ(f) :=

∫
Z

(f(x)− y)2dρ for f : X → Y.

Ideally we would like to have the minimizer

f̂ = argmin
f∈S

∫
Z

(f(x)− y)2dρ for f : X → Y.

To that end consider the conditional probability measure ρ(y|x) on Y for given x ∈ X , and the marginal
probability measure ρX onX . That is ρX(S) = ρ(π−1(S)) where π is simply the projection map π : X×Y →
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X . Therefore for any integrable function ϕ : X × Y → R,∫
X×Y

ϕ(x, y)dρ =

∫
X

(∫
Y

ϕ(x, y)dρ(y|x)

)
dρX ,

by Fubini’s Theorem. Now let us define the regression function fρ : X → R by

fρ(x) =∆
∫
Y

ydρ(y|x).

Any regularity hypothesis on ρwill induce regularity properties on fρ. Henceforth, assume fρ is a bounded
function. It is clear that fρ ∈ S, by definition and Fubini’s Theorem. An important constant in this paper is

σ2
ρ =∆

∫
X

(∫
Y

(fρ − y)2dρ(y|x)

)
dρX and so E(fρ) = σ2

ρ,

the importance of σ2
ρ can be seen in Proposition 3.1.

3 Empirical Error

Proposition 3.1. For every f : X → Y ,

E(f) =

∫
X

(f(x)− fρ(x))2 + σ2
ρ.

Proof of Proposition 3.1.

E(f) =

∫
Z

(f(x)− fρ(x) + fρ(x)− y)2

=

∫
Z

(f(x)− fρ(x))2 + 2

∫
Z

(f(x)− fρ(x))(fρ(x)− y) +

∫
Z

(fρ(x)− y)2

=

∫
X

(f(x)− fρ(x))2 + 2

∫
Y

(fρ(x)− y)

(∫
X

(f(x)− fρ(x))

)
+ σ2

ρ

=

∫
X

(f(x)− fρ(x))2 + 2

∫
X

(f(x)− fρ(x)) · 0 + σ2
ρ

=

∫
X

(f(x)− fρ(x))2 + σ2
ρ.

By Fubini’s Theorem and the definitions of fρ and σρ.

Thus, by Proposition 3.1, it is clear that the goal is to find a good approximation of fρ by taking random
samples on X instead of Z. By Proposition 3.1 the minimum of E(f) is our constant σ2

ρ, because
∫
X

(f(x) −
fρ(x))2 ≥ 0 with equality at fρ. σ2

ρ can be thought of as a conditioning number of ρ [2], and σ2
ρ = 0 is perfect

conditioning. Consider a sample z ∈ Zm, and denote the empirical error of f w.r.t. z as

Ez(f) =∆
1

m

m∑
i=1

(f(xi)− yi)2, with z = ((x1, y1), ..., (xm, ym)).

The empirical error of f is, as a matter of fact, the most important error in this paper, because it will tell us
how well our function is fitted to an actual sample set. Denote fz = fz,H as the minimizer of Ez(f). Cucker
and Smale’s first main result is to show that Ez(f) can be approximated by E(f) for a large enough number
of samples. Define the defect function of f as Lz(f) =∆ E(f) − Ez(f). In class we referred to the uniform
deviation, ∆n(Zn) := supf∈H |Lz(f)|. Before continuing we first need a couple of inequalities.
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Proposition 3.2. Let ξ be a random variable on a probability space Z with E(ξ) = µ and variance Var(ξ) = σ2.
[Chebyshev] For all ε > 0,

Prob
z∈Zm

{∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi)− µ

∣∣∣∣∣ ≥ ε
}
≤ σ2

mε2
.

[Bernstein] If |ξ(z)− µ| ≤M for almost all z ∈ Z, then for all ε > 0,

Prob
z∈Zm

{∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi)− µ

∣∣∣∣∣ ≥ ε
}
≤ 2e

− mε2

2(σ2+ 1
3
M2ε) .

For Chebyshev’s inequality just use Jensen’s inequality and the convexity of the square function. For
Bernstein’s inequality see [4]. For any function f : X → Y denote by fY the function

fY : X × Y → Y

(x, y) 7→ f(x)− y.

Theorem 3.3. Let M > 0 and f : X → Y be such that |f(x)− y| ≤M almost everywhere. Then, for any ε > 0,

Prob
z∈Zm

{|Lz(f)| ≤ ε} ≥ 1− 2e
− mε2

2(σ2+ 1
3
M2ε) (2)

where σ2 is the variance of f2
Y .

Proof of Theorem 3.3. Use Bernstein’s inequality for ξ = f2
Y .

Note that m ≥ 2(σ2+ 1
3M

2ε)

ε2 is sufficient for the right hand side of equation 2 to be less than 1.

4 Hypothesis Space and Target Functions

Consider the Banach space (C(X), ‖ · ‖∞), of continuous functions on X so that

‖f‖∞ = sup
x∈X
|f(x)|.

Let H be a compact (and often convex) subset of C(X), which we will call our hypothesis space. Here we
will approximate fρ as best as possible, but must first define two other functions. Define our target function
as

fH =∆ argmin
f∈H

E(f)

By Proposition 3.1, fH = argminf∈H
∫
X

(f − fρ)2, so fH is the closest function inH to fρ, in the least squares
sense. Notice that C(X) is a Banach space not an IPS, and that H is compact and thus complete (compact
sets are complete) but is not necessarily a subspace. Thus, Theorem 7.5 from the course notes, see [2], does
not apply. Yet, we still have existence. Since H is compact and E : C(X) → R is continuous, its image is
compact thus fH exists. Denote the error inH of a function f ∈ H as the normalized error

EH(f) =∆ E(f)− E(fH) =

∫
X

(f − fρ)2 −
∫
X

(fH − fρ)2.

Theorem 3.3 allows us to approximate Ez(f) with E(f), and with Proposition 3.1,

EH(fz) + E(fH) =

∫
X

(fz − fρ)2 + σ2
ρ,
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where the first error term EH(fz) is called the sample error and takes functions only fromHwhile the second
error term E(fH) is called the approximation error and is independent of sampling altogether. Notice that for
fixed sample size m, if we were to enlargeH then our approximation error will decrease while our sampling
error will increase, this is called “bias-variance” trade off. Let us introduce the notion of covering numbers,
where N (r, U) is the minimal number of balls of radius r which cover a set U . This number is always finite
for compact sets likeH.

5 Using Covering Numbers to Bound Uniform Deviation

Proposition 5.1. If |fj(x)− y| ≤M on a set U ⊂ Z of full measure for j = 1, 2, then for z ∈ Um

|Lz(f1)− Lz(f2)| ≤ 4M‖f1 − f2‖∞

Proof. First notice that

|(f1(x)− y)2 − (f2(x)− y)2| = |(f1(x)− f2(x))(f1(x) + f2(x)− 2y)|
≤ ‖f1 − f2‖∞|(f1(x) + f2(x)− 2y)|
≤ 2M‖f1 − f2‖∞

|Lz(f1)− Lz(f2)| ≤ | E(f1)− Ez(f1)− E(f2) + Ez(f2)|

≤
∣∣∣∣∫
Z

(f1(x)− y)2 − (f2(x)− y)2dρ

∣∣∣∣+

∣∣∣∣∣ 1

m

m∑
i=1

(f1(xi)− yi)2 − (f2(xi)− yi)2

∣∣∣∣∣
≤ 4M‖f1 − f2‖∞

Lemma 5.2. LetH = S1 ∪ ... ∪ Sl and ε > 0. Then

Prob
z∈Zm

{
sup
f∈H
|Lz(f)| ≥ ε

}
≤

l∑
j=1

Prob
z∈Zm

{
sup
f∈Sj

|Lz(f)| ≥ ε

}

Proof.

Prob
z∈Zm

{
sup
f∈H
|Lz(f)| ≥ ε

}
= Prob

z∈Zm


l⋃

j=1

{
sup
f∈Sj

|Lz(f)| ≥ ε

}
≤

l∑
j=1

Prob
z∈Zm

{
sup
f∈Sj

|Lz(f)| ≥ ε

}

Theorem 5.3. Let H be a compact subset of C(X). Assume that, for all f ∈ H, |f(x) − y| ≤ M almost everywhere.
Then, for all ε > 0,

Prob
z∈Zm

{∆n(Zn) ≤ ε} ≥ 1−N
( ε

8M
,H
)

2e
− mε2

4(2σ2+ 1
3
M2ε) .

Here σ2 = supf∈H σ
2(f2

Y ).
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Proof. Let l := N ( ε
8M ,H), then there exists f1, ..., fl ∈ H so that the disks, Di, centered at fi with radius ε

8M
coverH. Let U be any set of probability 1 and |f(x)− y| ≤M . So by proposition 5.1

|Lz(f)− Lz(fj)| ≤ 4M‖f − fj‖∞ ≤ 4M
ε

8M
= ε/2.

Thus we have that for any f ∈ Dj and z ∈ Um,

sup
f∈Dj

|Lz(f)| ≥ ε⇒ |Lz(fj)| ≥ ε/2.

So

Prob
z∈Zm

{
sup
f∈Dj

|Lz(f)| ≥ ε

}
≤ Prob

z∈Zm
{|Lz(fj)| ≥ ε/2}

≤ 2 exp
−mε2

4(2σ2(f2
jY ) + 1

3M
2ε)

Now applying lemma 5.2 we have

Prob
z∈Zm

{
sup
f∈H
|Lz(f)| ≤ ε

}
≥ 1−N

( ε

8M
,H
)

2e
− mε2

4(2σ2+ 1
3
M2ε) .

Lemma 5.4. LetH be a compact subset of C(X). Let ε > 0 and 0 < δ < 1 so that

Prob
z∈Zm

{
sup
f∈H
|Lz(f)| ≤ ε

}
≥ 1− δ.

Then
Prob
z∈Zm

{EH ≤ 2ε} ≥ 1− δ.

Proof of Lemma 5.4. Then an event exists with probability 1− δ, so that both

E(fz) ≤ Ez(fz) + ε and Ez(fH) ≤ E(fH) + ε.

Now since fz minimizes Ez onH,
Ez(fz) ≤ Ez(fH).

Thus on the aforementioned event,

E(fz) ≤ Ez(fz) + ε ≤ Ez(fH) + ε ≤ E(fH) + 2ε

or
EH(fz) ≤ E(fz)− E(fH) ≤ 2ε.

Theorem 5.5. Let H be a compact subset of C(X). Assume that, for all f ∈ H, |f(x) − y| ≤ M almost everywhere.
Let σ2 = supf∈H σ

2(f2
Y ). Then, for all ε > 0,

Prob
z∈Zm

{EH(fz) ≤ ε} ≥ 1−N
( ε

16M
,H
)

2e
− mε2

8(4σ2+ 1
3
M2ε) .

Proof of Theorem 5.5. Replace ε with ε/2, then use Lemma 5.4 and Theorem 5.3.
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A set S is convex if for any u, v ∈ S and α ∈ [0, 1], αu+ (1− α)v ∈ S.

Lemma 5.6. LetH be a convex subset of C(X) such that fH exists. Then fH is unique as an element in L2
p(X) and,

for all f ∈ H, ∫
X

(fH − f)2 ≤ EH(f).

Proof. Consider the line segment fHf , for some fixed f ∈ H. Since H is convex fHf ⊂ H. So ∀g ∈ fHf ,
g ∈ H and thus ‖fH − fρ‖ρ ≤ ‖g − fρ‖ρ. This gives that f̂ρfHf is obtuse, which implies

‖fH − f‖2ρ + ‖fH − fρ‖2ρ ≤ ‖f − fρ‖2ρ.

Thus
∫
X

(fH − f)2 ≤ E(f)− E(fH). X
Suppose we have two minimizers f ′ and f ′′. Then

‖f ′ − f ′′‖2ρ + ‖f ′ − fρ‖2ρ ≤ ‖f ′′ − fρ‖2ρ and

‖f ′′ − f ′‖2ρ + ‖f ′′ − fρ‖2ρ ≤ ‖f ′ − fρ‖2ρ,

which implies that f ′ = f ′′. X

Proposition 5.7. For all ε > 0 and 0 < α ≤ 1,

Prob
z∈Zm

{
sup
f∈H

EH(f)− EH,z(f)

EH(f) + ε
≥ 3α

}
≤ N

( αε
4M

,H
)
e−

α2εm
8M2 .

Theorem 5.8. Let H be a compact and convex subset of C(X). Assume that, for all f ∈ H, |f(x)− y| ≤ M almost
everywhere. Then, for all ε > 0,

Prob
z∈Zm

{EH(fz) ≤ ε} ≥ 1−N
( ε

24M
,H
)
e−

εm
288M2 .

Theorems 5.5 and 5.8 show that our sample error EH(fz) converges to 0 exponentially in probability with
respect to the number of samples. Thus, our choice on H is essential in learning theory, because if H is
relatively large then the covering number will be large so that EH(fz) is bounded by ε on an event with
unacceptably small probability, this is called overfitting. But it will cost us many more samples to rectify
this error. On the other hand if we choose a nice, simple hypothesis space,H, then our sample error may be
low (even with relatively few samples) but our approximation error may still be too large. This is a problem
of regression also known as “bias-variance” problem.

6 Chaining Method

In this section we will use the “chaining method” to improve the bound of Rn(F(Zn)). We will use a more
general notion of covering number.

Definition 6.1. We say that V ⊂ RT is an α-cover on xT with respect to ‖ · ‖p with 1 ≤ p ≤ ∞, if ∀f ∈ F , ∃v ∈ V

so that
(

1
T

∑T
i=1(f(xi)− vi)p

)1/p

≤ α or 1
p√
T
‖f(xT )− v‖p ≤ α.

The α-cover number on xT with respect to ‖ · ‖p is

N p(α,F , xT ) := min{|V | : V α-covers xT with respect to ‖ · ‖p}.

The following theorem was proved, using the Sauer-Shelah Lemma, by Mendelson [5] (page 14, his
Theorem 2.14).
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Theorem 6.2. Given a class F of {0, 1}- valued functions, xT , α > 0, and VC-dimension V (F) = d then

N 2(α,F , xT ) ≤
(

(4e2) log

(
2e2

α

))d(
1

α

)2d

.

The following is (essentially) Dudley’s Chaining Theorem [3].

Theorem 6.3. Suppose that F(Zn) ⊂ Rn. Then

Rn(F(Zn)) ≤ 12
√

2

∫ ∞
0

√
logN 2(α,F , xn)

n
dα

Proof. Let

B := sup
f∈F(Zn)

√√√√ 1

n

n∑
i=1

f2
i ,

and αj := 2−jB for j ∈ N, so αi → 0 as i → ∞. Let Tj be a minimal αj-cover of xn in the 2-norm. Let
T0 = {0} which is a α0-cover of xn for α0 = B. Denote the element cj(f) ∈ Tj to be the closest element in
Tj to f . This means that ‖f − cj(f)‖2 ≤

√
nαj , for each j.

The first step is to use telescoping. Notice that f = f − cN (f) +
∑N
j=1(cj(f)− cj−1(f)), since c0(f) = 0.

Now

Rn(F(Zn)) = E

[
sup

f∈F(Zn)

∣∣∣∣∣ 1n
n∑
i=1

σifi

∣∣∣∣∣
]
,Rademacher definition,

= E

 sup
f∈F(Zn)

∣∣∣∣∣∣ 1n
n∑
i=1

σi

fi − (cN (f))i +

N∑
j=1

((cj(f))i − (cj−1(f))i)

∣∣∣∣∣∣
 , telescoping,

≤ E

[
sup

f∈F(Zn)

∣∣∣∣∣ 1n
n∑
i=1

σi (fi − (cN (f))i)

∣∣∣∣∣
]

+ E

 sup
f∈F(Zn)

∣∣∣∣∣∣ 1n
n∑
i=1

σi

 N∑
j=1

((cj(f))i − (cj−1(f))i)

∣∣∣∣∣∣


≤ E

[
sup

f∈F(Zn)

∣∣∣∣∣ 1n
n∑
i=1

σi (fi − (cN (f))i)

∣∣∣∣∣
]

+

N∑
j=1

E

[
sup

f∈F(Zn)

∣∣∣∣∣ 1n
n∑
i=1

σi((cj(f))i − (cj−1(f))i)

∣∣∣∣∣
]

≤ αN +

N∑
j=1

E

[
sup

f∈F(Zn)

∣∣∣∣∣ 1n
n∑
i=1

σi((cj(f))i − (cj−1(f))i)

∣∣∣∣∣
]
, by Cauchy-Schwarz.

By the Finite Class Lemma, the triangle inequality, and |Tj | ≥ |Tj−1|, we have

E

[
sup

f∈F(Zn)

∣∣∣∣∣ 1n
n∑
i=1

σi((cj(f))i − (cj−1(f))i)

∣∣∣∣∣
]
≤ 2

supf∈F(Zn) ‖cj(f)− cj−1(f)‖2
√

log |Tj ||Tj−1|
n

, F.C.L.

≤ 2
supf∈F(Zn)(‖cj(f)− f‖2 + ‖f − cj−1(f)‖2)

√
log |Tj ||Tj−1|

n

≤ 2

√
n(αj + αj−1)

√
log |Tj ||Tj−1|

n
,definition αj-cover,

≤ 6
αj
√

2 log |Tj |√
n

,definition αj and |Tj | ≥ |Tj−1|,

= 6
√

2
αj
√

log |Tj |√
n

.
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So now we have

Rn(F(Zn)) ≤ αN +

N∑
j=1

E

[
sup

f∈F(Zn)

(
1

n

n∑
i=1

σi((cj(f))i − (cj−1(f))i)

)]

≤ αN + 6
√

2

N∑
j=1

αj
√

log |Tj |√
n

, shown,

= αN + 6
√

2

N∑
j=1

αj

√
logN 2(αj ,F , xn)

√
n

,definition Tj ,

= αN + 12
√

2

N∑
j=1

(αj − αj+1)

√
logN 2(αj ,F , xn)

√
n

, since αj = 2(αj − αj+1),

≤ αN + 12
√

2

∫ α1

αN+1

√
logN 2(α,F , xn)√

n
dα, since N 2(α,F , xn) is decreasing in α,

≤ αN + 12
√

2

∫ ∞
αN+1

√
logN 2(α,F , xn)

n
dα,positivity of integrand,

for any N . Now letting N approach∞, giving us

Rn(F(Zn)) ≤ 12
√

2

∫ ∞
0

√
logN 2(α,F , xn)

n
dα.

Corollary 6.4. If F is a VC class of binary functions, then

Rn(F(Zn)) ≤ 160

√
V (F)

n

Proof. For binary functions we have that

sup
f∈F(Zn)

√√√√ 1

n

n∑
i=1

f2
i = 1.

Recall theorem (6.2) where N 2(α,F , xn) ≤
(

(4e2) log
(

2e2

α

))V (F) (
1
α

)2V (F) and notice N 2(α,F , xn) = 1 for
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α > 1. So by theorem 6.3, we have that

Rn(F(Zn)) ≤ 12
√

2

∫ ∞
0

√
logN 2(α,F , xT )

n
dα, theorem 6.2,

≤ 12
√

2

∫ 1

0

√
log[
(
(4e2) log

(
2e2

α

))V (F) ( 1
α

)2V (F)
]

n
dα, theorem 6.3,

= 12
√

2

√
V (F)

n

∫ 1

0

√
log[

(
(4e2) log

(
2e2

α

))(
1

α

)2

]dα, log power property,

∗
≤ 12
√

2

√
V (F)

n

∫ 1

0

√
log[(4e2 log (2e2))

(
1

α

)3

]dα, since log
[

2e2

α

]
≤ log

[
2e2
] (

1
α

)
,

= 12
√

6

√
V (F)

n

∫ 1

0

√
log[(4e2 log(2e2))

1/3

(
1

α

)
]dα, log power property,

= 12
√

6
(
4e2 log(2e2)

)1/3√V (F)

n

∫ 1/(4e2 log(2e2))
1/3

0

√
log

(
1

β

)
dβ,with β = α/

(
4e2 log(2e2)

)1/3
,

< 46

√
V (F)

n
.

Much of my work came from work by Rakhlin [6], and notes by a Dr. Kakade. If you integrate directly
at the ∗ inequality above, you still do no better then 43. So 46 is a good bound.
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